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The study of convect ive  flows of a v iscous  c o m p r e s s i b l e  fluid in sphe r i ca l  l aye r s  is of cons iderab le  in- 
t e r e s t  for  var ious  technical  applicat ions.  F r o m  the l a rge  amount of expe r imen ta l  ma t e r i a l  accumula ted  [1-4] 
it is poss ib le  to obtain ave rage  h e a t - t r a n s f e r  c h a r a c t e r i s t i c s ,  to es tab l i sh  the type of flow, and to c l a s s i fy  the 
flow r e g i m e s  as a function of the Grashof  number  and the ra t io  of the d i a m e t e r s  of the spheres .  Scanlan et al. 
[3] give the t e m p e r a t u r e  prof i les  for  a wide r ange  of Prandt l  numbers .  All the expe r imen ta l  pape r s  a r e  devoted 
to a s tudy of convection when the inner spher i ca l  su r f ace  is the hot ter .  The p rob l em was analyzed theore t i ca l ly  
in [5, 6]. Mack and Hardee  [5] studied the s teady a x i s y m m e t r i c  na tura l  convect ion of an incompress ib le  liquid 
between i so the rmal  concent r ic  sphe res  at low Rayle igh number s  ~Ra < 104). The fundamental  equations w e r e  
solved by expanding the t e m p e r a t u r e  T and the s t r e a m  function $ in s e r i e s  in powers  of the Rayleigh number  
and es t imat ing  the f i r s t  th ree  t e r m s  in each of these  s e r i e s .  The configurat ion of flow l ines ,  the dis t r ibut ion of 
ve loci ty  and t e m p e r a t u r e ,  and data on heat f luxes at  the spher ica l  su r f aces  a r e  given for  one pa r t i cu la r  case .  
S imi la r i ty  t heo ry  is used in [6] to obtain the h e a t - t r a n s f e r  law for  na tura l  convect ion in cy l indr ica l  and sp h e r i -  
cal  l aye r s ,  taking account  of the cu rva tu re  of the region.  In addition to exper imen ta l  and analyt ical  methods of 
invest igation,  numer i ca l  exper iment  is becoming  m o r e  and m o r e  important ,  enabling one to study r a t h e r  c o m -  
plete  physica l  models ,  to analyze  in detail  the effect  of var ious  p a r a m e t e r s  on the phenomena under study,  and 
to develop the fundamental  laws of the p roce s s .  Numer ica l  exper iment  yields the information n e c e s s a r y  for  a 
m o r e  thorough ana lys i s  of convect ive  heat  t r a n s f e r  and the es tab l i shment  of the law of in teract ion of hydro-  
dynamic and t h e r m a l  ef fec ts ,  namely:  the s t ruc tu re  of the flow field,  and the dis tr ibut ion of densi ty,  t e m p e r a -  
t u re ,  and the local  heat f luxes at the boundar ies  of the region.  It is p rac t i ca l ly  imposs ib le  to obtain this infor-  
mat ion in a fu l l - s ca l e  exper iment .  

The purpose  of the p resen t  paper  is to de te rmine  the laws of convect ive motion and heat  t r a n s f e r  of a 
viscous  c o m p r e s s i b l e  gas between a cooled inner spher i ca l  su r face  and a heated outer  concent r ic  sphe r i ca l  
sur face .  It is a s s u m e d  that  the gas obeys the ideal gas law p = R * p T ,  and that the t e m p e r a t u r e  dependence of 
the t h e r m a l  conductivi ty :k and the dynamic v i scos i ty  p is given by the Sutherland fo rmula  

r 3/2 . V ~  = 0.254 �9 10 -2  
T -J- 201 /AT ~'m ' 

r 3/2 V ~  
= 1.465 �9 10 -~ r +  li0,4/AT ~rn 

The specif ic  heat Cp depends l inea r ly  on the t e m p e r a t u r e .  The only body fo rce  is gravi ty .  

The p r e sen ce  of a t e m p e r a t u r e  gradient  in the gravi ta t ional  f ield makes  hydros ta t ic  equi l ibr ium imp o s -  
sible.  The convect ion cu r r en t s  which a r i s e  in the gap exer t  a l a rge  effect  on the h e a t - t r a n s f e r  p roces s .  The 
t e m p e r a t u r e  dis t r ibut ion changes ,  and the r a t e  of heating the med ium in the gap is increased .  The flows gener -  
ated a r e  s y m m e t r i c w i t h  r e s p e c t  to the ve r t i ca l  z axis of the cyl indr ica l  coordinate  s y s t e m  x, 0, z with its 
or igin  at the center  of the concent r ic  spher i ca l  su r f aces .  

The investigation of flows and heat  t r a n s p o r t  in the gas is based  on the n u m e r i c a l  solution of the s y s t e m  
of equations for  unsteady convect ive  heat t r a n s f e r ,  which can be wr i t t en  in the f o r m  
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t is  the  t i m e ;  u and w a r e ,  r e s p e c t i v e l y ,  the  x and z c o m p o n e n t s  of  the  v e l o c i t y  v ' ;  p is the  p r e s s u r e ;  p is  the  
d e n s i t y ;  T is  the  t e m p e r a t u r e ;  and  r is  the  d i s s i p a t i o n  func t ion .  The  t e m p e r a t u r e  is  m e a s u r e d  in un i t s  of the  
t e m p e r a t u r e  d i f f e r e n c e  b e t w e e n  the  hot  and  co ld  s u r f a c e s  A T '  = T ~ - T ~  ( f rom now on d i m e n s i o n a l  quan t i t i e s  
a r e  deno ted  by  p r i m e s ) ,  and  the  v e l o c i t y  unit  is the  v e l o c i t y  of sound  V' = V xR* T m at  the  a v e r a g e  t e m p e r a t u r e  

o v e r  the  gap  T~, --  T] + r '  2 u n d e r  cond i t i ons  of h y d r o s t a t i c  e q u i l i b r i u m  in the  a b s e n c e  of  body f o r c e s .  The  un i t s  of 
2 

? 
d e n s i t y ,  s p e c i f i c  hea t ,  d y n a m i c  v i s c o s i t y ,  and t h e r m a l  c o n d u c t i v i t y  a r e  t h e i r  v a l u e s  at  the  t e m p e r a t u r e  Tm.  The  
uni t  of l eng th  is  t a k e n  a s  t he  t h i c k n e s s  of the  l a y e r  5 ' ' ' = r 2 - r i ,  the  t i m e  s c a l e  a s  ~ ' / ( V ' )  2, p r e s s u r e  a s  pm(V'}  2, 
and  g r a v i t y  a s  g ' .  The  d i m e n s i o n l e s s  g roups  a p p e a r i n g  in the  equa t ions  have  the  f o r m  

Re = V'U/v ' ,  ce = g'6'/(V') 2, Ec = (V')"/c'pmhT'. 

S t e a d y - s t a t e  d i s t r i b u t i o n s  of v e l o c i t y ,  d e n s i t y ,  and  t e m p e r a t u r e  a r e  r e a c h e d  at  t---co. We a s s u m e  tha t  a t  
z e r o  t i m e  the  gas  is  s t a t i o n a r y  o v e r  the  who le  r e g i o n  (u =w = 0). 

F o r  g iven  c o n s t a n t  t e m p e r a t u r e s  on the  b o u n d a r i e s  of the  r e g i o n  r = r l ,  T =T1; r =r2 ,  T = T  2 the  t e m p e r a -  
t u r e  w i th in  the  l a y e r  v a r i e s  on ly  a l o n g  the  r a d i u s  and  is g iven  by  the  h e a t - c o n d u c t i o n  equa t ion  

a [~aT'~ o ( O r )  x or 0. 

The  d e n s i t y  a t  t =0  is d e t e r m i n e d  by the  equa t ion  of s t a t e  in a c c o r d  wi th  the  g iven  t e m p e r a t u r e  d i s t r i b u t i o n .  
The  b o u n d a r y  cond i t i ons  on the  s p h e r i c a l  s u r f a c e s  a r e  t a k e n  a s  

r = rl, r = r~, u = w = 0, 

w h e r e  r is the  r u n n i n g  v a l u e  of the  r a d i u s ;  the  d e n s i t y  is  c a l c u l a t e d  f r o m  the  equa t ion  of con t inu i ty ,  t a k i n g  a c -  
count  of  the  b o u n d a r y  c o n d i t i o n s  fo r  t he  v e l o c i t y  c o m p o n e n t s .  
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For constant temperatures  of the spherical  surfaces ,  the s teady-state  flow and heat transfer depend on the 
following dimensionless  quantities: the Grashof number Gr = g'~'~hT'Sii3/(v'~) 2, the Prandtl number l>z = 

i f ! PmCpm/;Cm, the hydrostatic compress ib i l i ty  cr i ter ion eF,  the ratio of therad i i  of the spheres  r 2 / r l ,  and the 
ratio of the specific heats u = e p / c  v . '  ' We have investigated the effect of the Grashof number and the ratio of the 
radii  r 2 / r  I on flow and heat transfer.  The values of the res t  of the governing cri ter ia  were  fixed: Pr =0.71,  

=1.4,  CF=0.05.  In the calculations the variation of the Gr number for a fixed value of c F was achieved by 
varying the Re number in accord with the express ion  Re = ~ (Gr/eF)T m. 

The l imiting time-independent solution of the s y s t e m  of nonlinear differential equations (1) was  found by 
an explicit  difference s cheme  with correct ion at each t ime step [7]. The existence and uniqueness of the solu-  
tion for given boundary and initial conditions follow from the physical  meaning of the problem. 
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TABLE 1 
Dis- ] 

Mesh e/~l eh2 c~ep- ~k 
!xm I an~ y' 

31x3tl t,4747 t,4921 t 2 ] t,4834 
i7x33! t,4855 t,4929 015 I 1,4892 

The s y s t e m  of d i f ference  equations was obtained by the method of ba lances ,  which e s sen t i a l ly  cons i s t s  in 
in tegra t ing each equation of the or ig ina l  s y s t e m  (1) over  a cel l  of the reg ion  and then r ep l ac ing  the in tegra ls  by 
f ini te  sums .  The f in i t e -d i f fe rence  equations a r e  wr i t ten  in opera to r  f o r m ,  which g rea t ly  s impl i f ies  the p r o -  
g r a m m i n g  for  the compute r .  

We analyze  the method of obtaining the di f ference equations by the example  of a quas i l inear  f i r s t - o r d e r  
d i f ferent ia l  equation depending on two spat ia l  va r i ab l e s  and wri t ten  in the f o r m  of a d ivergence  

Ov 0 ( Ov ) ao ~-~ -~ ~x j ajh ~ sO, k = l ,  2, (2) 

where  the xj a r e  Ca r t e s i an  coord ina tes ,  and the ajk=ajk(V, x, t) a r e  smooth functions in the c losed  domain R 
within which the solution of Eq. (2) is sought. 

We introduce in domain R an or thogoual  cu rv i l inea r  coordinate  s y s t e m  zi,  chosen because  of the geomet ry  
of the reg ion  and the f o r m  of the boundary conditions for  Eq. (2). 

The coordinate  l ines z i =cons t  f o r m  a curv i l inea r  or thogoual  mesh  in domain R with L nodes along z 1 and 
N along z 2. We choose four a r b i t r a r y  ce l l s  of the mesh  having a common node, such as the one with coordinates  
zll  = l hi, Z2m = mh2; h I and h 2 a re ,  r e spec t ive ly ,  the mesh  s izes  in the z 1 and z 2 d i rec t ions .  The f o r m  of the mesh  and 
the number ing  of the nodes a r e  shown in Fig. 1. 

Let ~2 be an aux i l i a ry  cel l  with its cen ter  at (zt/, Z2m) and sides pass ing  through the nodes with coordi-  
nates  

(Ziz+i/~, z~,~), (zll, z~,~+i/.~), (zt~, z:m-l/..), (z1~-11,, z~.,,). 

The ha l f - in teg ra l  subsc r ip t s  denote, for  example ,  

ziz+:/2 = lhl ~- h:/2: z , _m- : /2  ~ m h , ,  - -  h ~ / 2 .  

We integra te  Eq. (2) ove r  cel l  ~2 and approx imate  the in tegra ls  on the r igh t -hand  side of the equation by using 
G r e e n ' s  t heo rem.  In ope ra to r  f o r m  we can wr i t e  

aw d~ 

~2 

where  nj is the xj component  of the outward no rma l  to contour I" of cel l  ~ .  

For  convenience in writ ing,  we number  the s ides  of ~2 as shown in Fig. 1. We denote by W k the value of 
the integrand on the k - th  s ide ( k = l ,  2, 3, 4), and by W/, m its value at the node (/hi, mh2). 
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Along side k we t r ea t  W k as constant and equal to its value at the node with the haf t - in tegra l  subscr ip t s ,  
where  W k is calculated by the symmet r i c  formula ,  e .g. ,  

W 1 = W z+1/2 ,  m = ( W , .  m + W l + ~ , m  )/2. (3) 

We descr ibe  the contour integral  along the sides of fa by using (3). At the same t ime we t r a n s f o r m  f r o m  coord i -  
nates xj to z i. Then 

= w ,  (4) 
Ft Fa F, F,, 

where H I and H 2 a re  the Lan~ coefficients  for  the sys t em zi. In calculating with (4) it is n e c e s s a r y  to make 
sure  that H~:dz i > 0. 

It follows f r o m  (2) that W in Eq. (4) depends l inear ly  onder iva t iveswhich  a re  calculated by the formula  
is] 

b/Ox I = (l~i/Hi)O/Oz t, (5) 

where  lij is the xj component of the unit vector  tangent to the coordinate  line z i. Using (5) we have 

. f ( a j , ~ ) n f l s = ~ a i l , n , [ l ~ i  O--2-V )ds. 

The integral  on the r ight-hand side is evaluated by par ts  along each side i of cel l  fa. The der ivat ives  in (5) 
were  de termined by the symmet r i c  formulas  ensuring the approximation of O/axj  to second-orde r  accuracy.  
For  example,  

Ov/(gzl = (vs. ,a+l - -  vz. m-1 q- Vz+a, m-l--vl-1, m-l)/4hl; 
OvlOz2 = (v z+l, ,, - -  vz, ,,,)lh,_. 

In the problem under considerat ion the space cel l  ~2 is chosen as follows. We divide the region between 
the spheres  into sec to r s  by planes R e passing through the axis of s y m m e t r y  with an angle A0 between them. 
Because of the s y m m e t r y  of the problem it is sufficient to find the solution in one sec tor .  We seek  the solution 
in the sec to r  bounded by the planes R 0 and R0 which co r respond  to the angles 0 =0 and 0 =AO.  We introduce 
polar coordinates  r and ~0 in the R 0 plane. Then the sides of the space cel l  ~2 a re  fo rmed  by the sides of fa (Fig. 
1) by rota t ing the R 0 plane through an angle A0 about the z axis. The la te ra l  sides of '~ l ie in the planes R 0 and 
R 0 of the sec tor  in which the solution is being determined.  The cel ls  ~ d i rec t ly  adjacent to the axis of sym-  
me t r y  a re  fo rmed  by rota t ing the half cel l  f~ by A0. To save space the integral  notation of the equations is not 
presented.  Because of the s y m m e t r y  of the problem,  the integrand does not depend on 0 and 

. -g-X" xdxdzdO = A0 ~ xdxdz 

"5 a 

where  X is any of the coordinates  t ,  r ,  z. The methods of evaluating the contour integrals for  cel ls  on the z 
axis @ = ~ x / 2 )  and for  those at a distance f r o m  it ( - r / 2  <g0 < + r / 2 )  a re  different .  F o r - r / 2  <r  < +~ /2  we 
have 

y y  ~~ dxdz = ~ (Wx)  nxds = [ (W:x  ~ --  Wsxs) cos ~ . sin r p - -  
o F 

ar ] [(W~x2 - -  W4x,) r + - -  (Wxxx -4- Waxa) cos r sin -5-j Ar -4- 

--]--(W,x,-1- Wax,)~L] cos (p. sin q9 q-(~(P sin2A(P ) [W2 (r q- ~L) 2 -  W, (r -- -~5-)2]; 

• sin ~ Acp -- (Wlx 1 -- Wsxa) cos q0 �9 cos -g- -L- (Wlx l  + W3x~) sin ~p sin Ar. 

For  ~ = + ~ /2  

o 
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The d i f fe rence  e x p r e s s i o n s  for  q~ = - ~ / 2  a r e  w r i t t e n  s i m i l a r l y .  

The n u m e r i c a l  solut ion enables  one to obtain the hydrodynamic  s t r u c t u r e  of the flow and the pa t t e rn  of the 
t e m p e r a t u r e  d i s t r ibu t ion  T (r, (p) for  va r ious  flow r e g i m e s  c h a r a c t e r i z e d  by the Grashof  number  Gr and the 
r a t i o  of the r a d i i  r 2 / r  1. Knowing the t e m p e r a t u r e  d i s t r ibu t ion ,  the loca l  Nusse l t  numbers  ( ~ T / a r ) i  at the bound- 
a r i e s  of the r eg ion  can be ca l cu la t ed ,  and then the convect ion coeff ic ient  ek i  is given by the e x p r e s s i o n  

~ ;"~ (6) 
~h{ - -  )~m - -  r l r2  ~ {'' 

which shows the exces s  of convect ive  heat  t r a n s f e r  over  pure  conduction.  

In Eq. (6), (0T /~r )  i is the ave r age  value of the Nusse l t  number  over  the boundary of the r eg ion  and i s  
equal to 

-~- J / ,  (~-r)~ cos qDdq~, i = t, 2. 

The de r iva t ive  in the l a s t  e x p r e s s i o n  was approx ima ted  by the t h r e e - p o i n t  fo rmu la s  giving s e c o n d - o r d e r  a c -  
c u r a c y  of the fo rm 

OT[ar ~_ (3Tz-1, rn - -  4Tz, m zu Tz+I, m)/2Ar. 

Using the d i f fe rence  method d e s c r i b e d ,  a BI~SM-ALGOL p r o g r a m  was wr i t t en  for  a BI~SM-6 computer  
and t r a n s l a t o r  connected  to a "Dubna" moni tor  s y s t e m .  The machine  t ime  r e q u i r e d  with th is  a r r a n g e m e n t  was 
s h o r t e r  than with an o r d i n a r y  ALGOL t r a n s l a t o r  by a fac tor  of 2.2. 

The main r e s u l t s  p r e s e n t e d  below w e r e  obtained with an Nr • N~ = 17 • 33 mesh.  This mesh  was op t imum 
f r o m  the point of view of a d m i s s i b l e  ca lcu la t iona l  e r r o r  and the n e c e s s a r y  expendi ture  of machine  t ime .  To 
jus t i fy  the choice  of the numbers  of nodes of the d i f ference  mesh  along the different  coord ina te  axes  we p e r -  
f o rmed  ca lcu la t ions  with 17 • 17, 17 •  and31  • meshes .  The effect  of the mesh s ize  on the convect ion  
coeff ic ient  can be judged f r o m  the data of Table  1 obtained for Gr =0.5 �9 104, c F = 0.05, and r 2 / r l = 2 .  The data 
in Table  1 c o r r e s p o n d  to the s t eady  s ta te .  In a ca lcu la t ion  without e r r o r  e k l = e k 2 .  The d i s c r e p a n c y  is defined 
as A8----([8~2-- e~,l/ek~.) t00%. 

A c o m p a r i s o n  of the convect ion coeff ic ients  for  l • m=17  • and l •  = 31 • shows that  the d i s c r e p -  
ancy is not a lways  s ign i f ican t ly  d e c r e a s e d  s imply  by i nc rea s ing  the number  of nodes.  This  effect  can be ex-  
p la ined  by the nonuniformity  of the m e s h  r e su l t ing  f rom the c u r v i l i n e a r  na ture  of the r eg ion .  

In choosing a un i form mesh  (l - 1 = m  - 1) it is a s s um e d  that  a ce l l  12 wi l l  be n e a r l y  squa re ,  but ac tua l ly  
it depends on the pos i t ion  of the  ce l l  along the rad ius .  The degree  of d i s to r t i on  of the ce l l  is c h a r a c t e r i z e d  by 
the devia t ion  of the r a t i o  of the s ides  of the ce l l  f r om unity 

K = Ar/rAcp = 6(m --  1) / ( / - -  l)r~, 

where  l - 1 is the number  of ASx s teps  along the r a d i u s ,  and m - i is the number  of mp s teps  in angle f r o m r  = 
- ~ / 2  to ~ = +~/2 .  

When 6 =1 this  r e l a t i o n  r e d u c e s  to 

K = (m - -  1) / ( / - -  t)r~. (7) 

Hence when l - 1 = m - i we obtain K = l / r T r ;  i .e . ,  the d i s to r t ion  does not depend on the number  of nodes along 
r and ~ and is rain}mum for  r =1/7r =0.32. 

The data in Table  1 w e r e  obtained for  a r a t i o  of the r a d i i  r 2 / r  I =2, which for  5 = 1 leads  to the r e l a t i on  
1 _<r _<2, and, consequent ly ,  1 /2~_<K_<l /~ .  C l e a r l y ,  it is n e c e s s a r y  to take  l - 1 ~ m - 1 to d e c r e a s e  the d i s -  
to r t ion  of the ce l l .  The op t imum mesh,  de t e rm i ne d  by the r a t io  ( m - l ) / ( l  - 1)rTr for  1 _<r _<2, s a t i s f i e s  the 
inequal i ty  7r _< ( m - l ) / ( / - 1 )  -<27r, whichshows that  on the ave rage  the number  of nodes a long  gv must  be ap 2 
p r o x i m a t e l y  4.5 t i m e s  as  l a rge  as  the number  a long r .  

Because  of the l imi ta t ions  of the compute r  m e m o r y  the to ta l  number  of nodes is o r d i n a r i l y  kept constant ,  
I • m =cons t .  Fo r  a r a t i o  of s t eps  Ar and ~p de t e r m i ne d  by Eq. (7) the e r r o r  in the approx imat ion  of the de-  
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r iva t ive  with r e s p e c t  to r is apprec iab ly  inc reased ,  and this has an a d v e r s e  effect  on the r e su l t s  of the ca l cu la -  
tion. The op t imum mesh  is chosen  by a ca re fu l  numer i ca l  exper iment .  In our ca se  Nr x N~ =17 x33 ,  for  which 
the r a t i o  (m - 1 ) / q  - 1) =2. 

With Gr _< 104 this mesh  leads to a d i sc repancy  of about 0.5%. As Gr is inc reased  the d i sc repancy  in- 
c r e a s e s  rapid ly ,  and for  Gr =0.5 .105 and '105 it r e a c h e s  7 and 9%, r e spec t ive ly .  This inc rease  in d i sc repancy ,  
and, consequently,  in the e r r o r  of the calculat ion,  is accounted for  in the p re sen t  ca se  by the compl ica t ion  of 
the flow s t ruc tu re .  For  these  Gr numbers  a secondary  eddy is f o rmed  in the neighborhood of go =+ ~ /2 .  A 
weaker  eddy appea r s  at ~ = - ~ / 2 ,  c lose  to the outer  and inner spheres .  

The numer ica l  solution requ i red  2-3 ealculat ional  nodes along r in the region of the secondary  eddy, i .e. ,  
the m e s h  was v e r y  c o a r s e ,  pa r t i cu l a r ly  if the eddy did not extend over  the whole width of the gap. This  fault  
was e l iminated by changing to a f iner  31 • 33 mesh ,  although such a fine m e s h  was not r equ i r ed  for  most  of the 
computat ional  region.  A m o r e  r easonab le  approach  is c l e a r l y  to c o m p r e s s  the m e s h  in r and ~ in the neigh- 
borhood of the ve r t i ca l s  go = • ~ /2 .  This d e c r e a s e s  the calculat ional  e r r o r  without increas ing  the total  c o m -  
putation t ime  too much.  

�9 The t ime  s tep  is de te rmined  by the s tabi l i ty  conditions 

At ~ rain (h~/4v, h/Jal) 

(or At _~h/I a I, s ince genera l ly  h/la ] << h2/4~), obtained by Four i e r  methods fo r  the model  equation 8u/Ot = 
aOu/Ox+vO2u/Ox2,where  a is a quantity r e l a t ed  to the m a x i m u m  of the veloci t ies  u, w; r is a constant  d e t e r -  
mined by the rrmximum value of the k inemat ic  v iscos i ty .  

To obtain the veloci ty  and t e m p e r a t u r e  dis t r ibut ion pa t te rns  and the dependence of the convect ion coef -  
f icient  on the governing c r i t e r i a ,  calculat ions w e r e  p e r f o r m e d  in which the Grashof  number  and the r a t io  of the 
rad i i  w e r e  var ied  between the following l imi ts :  103 _<Gr _~105, 1.2 ~ r 2 / r  1 _~3. 

The nature  of the motion genera ted  in the layer  and the c h a r a c t e r i s t i c s  of the t e m p e r a t u r e  dis t r ibut ion 
can be judged f r o m  Fig. 2 which shows the flow l ines ~ and the i so the rms  for  s e v e r a l  values  of the Grashof  
number .  Convection hard ly  affects  the heat  t r a n s f e r  for  Gr =103, although Fig. 2a c l e a r l y  shows the p re sence  
of ascending and descending flows. The tota l  amount of heat  t r a n s f e r r e d  in this  ca se  is by conduction, as is 
conf i rmed  by the value of 0.98 for  the convect ion coefficient .  

For  Gr =103 the i so the rms  a re  p rac t i caUy  c i r c l e s ,  but with increas ing  values  of the Grashof  number  
they a r e  d is tor ted  (Fig. 2b), and for  Gr =104 they undergo a pronounced change (Fig. 2c). This is r e l a t ed  to 
the c h a r a c t e r  of the motion in the gap. The gas r i s e s  along the heated outer  sphe re  and descends  along the 
cooled inner sphere .  In this ca se  unicel lular  flow (crescent  eddy) occurs  for  all  the values  of r 2 / r l a n d G r a s h o f  
numbers  Gr < 103 cons idered .  The secondary  eddy which appea r s  at the inner sphe re  nea r  the ve r t i ca l  go = 
•  for  Gr =104 is sma l l  and localized,  and the re fo re  is a s sumed  to be unicel lu lar  a lso .  As the Grashof  num-  
be r  is inc reased  for  a constant  ra t io  r2 / r  1 the intensi ty of the c i rcula t ion in the gap i n c r e a s e s  and eddy center  
is d isplaced downward at an angle (Fig. 2a-c) .  

In this type of flow the gas in the eddy par t  of the reg ion  heats  up m o r e  s t rongly ,  and the i so the rms  he re  
a r e  r a t h e r  fa r  away f r o m  the outer  wal l  (Fig. 2c) and bunched c lose  to the inner wall .  The opposi te  effect  is 
obse rved  in the lower par t  of the reg ion ;  the cooled gas lowers  the t e m p e r a t u r e  of the inner sphere .  At the 
outer  sphe re  the heated gas is c a r r i e d  upward by the flow, and the i so the rms  a r e  c lose  to the wall .  

For  Gr =104, co r respond ing  to a r a t h e r  we l l -deve loped  convect ion r e g i m e ,  t h e r m a l  and veloci ty  boundary 
l aye r s  a r e  f o rme d  c lose  to the sphe res .  The fo rma t ion  of a boundary l ayer  and the flow core  with inc reas ing  
Grashof  number  can be t r a ced  in Fig. 3. The cu rves  a r e  plotted for  r 2 / r  1 =2. F igure  3 shows the prof i le  of the 
ve r t i ca l  component  of ve loci ty  w at go =0 for  var ious  values  of the rad ius  r .  In reg ions  adjoining the sphe re s  
the gas has a high flow veloci ty  as com pa red  with the veloci ty  in the cen t ra l  and main  pa r t s  of the eddy. This  
effect  i nc reases  as Gr approaches  the m a x i m u m  values  cons idered .  The m a x i m u m  veloci ty  of the ascending 
flow w 2 occu r s  at a d is tance  f r o m  the boundary which is l a rge  in c o m p a r i s o n  with that  of the m a x i m u m  veloc i ty  
w 1 of the descending flow, s ince the outer  heated wall  has a l a r g e r  a r e a  than the cold inner wall ,  and the dynam-  
ic l ayer  of gas is th icker  here .  

F igure  4 shows the t e m p e r a t u r e  prof i le  as functions of the rad ius  for  var ious  values  of the angle ~p. T e m -  
pe r a tu r e  s t ra t i f i ca t ion  with a cen t ra l  zone where  the t e m p e r a t u r e  gradient  is �9 and r e l a t i ve ly  un i form is 
c h a r a c t e r i s t i c  for  convection. This  port ion co r r e sponds  to the cen t ra l  low-ve loc i ty  pa r t  of the eddy where  heat  
is t r a n s f e r r e d  m a i n l y  by conduction. Most of the heat  t r a n s f e r  is concent ra ted  c lose  to the boundar ies  of the 
reg ion  w h e r e  the gradient  along the rad ius  is l a rge .  As go inc reases  f r o m -  7r/2 to 7r/2 the value of the s teep  
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inc rease  of the gradient  at the inner sphere  inc reases ,  and the value at the outer  sphere  dec reases .  This kind 
of prof i le  r e su l t s  f r o m  the high r a t e  of heat t r an s f e r  in the tangential  d i rect ion in the high-veloci ty  boundary 
layer .  The shape of the prof i le  for  a cor responding  value of the angle r ema ins  essent ia l ly  unchanged for a 
change in the ra t io  r 2 / r l ,  and only the t empe ra tu r e  changes for  a given radius  and extension of the c h a r a c t e r i s -  
t ic par ts  of the prof i le  along r .  All these p roper t i e s  of the prof i les  are  conf i rmed quali tat ively by exper iment  
[31. 

Process ing  the r e su l t s  of the numer ica l  solution by s imi la r i ty  theory  methods gives the following expres -  
sion for  the convection coeff icient  e k as a function of the Rayleigh number Ra: 

ek = 0. |43.Ra ~ (8) 

in the range  7 �9 102 <_Ra -<7.104 and 1.2 ~_ r2 / r  1 ~ 3. The cor responding  exper imenta l  formula  for  a spher ica l  
l aye r  obtained in [31 is 

ek = 0.12.Ra ~ 

It is valid i n t h e  range  1 .4 .104~Ra_<  2 .5 .106 ,P r  =0.71, and 1 . 0 9 _ < r 2 / r l ~  2.81. The s imi la r i ty  c r i t e r i a  a re  
the same in both cases .  

In addition to the integral  hea t - t r ans fe r  ch a r ac t e r i s t i c s ,  the local  heat fluxes at the outer  and inner 
spheres  we r e  calculated and plotted in Fig. 5 for  two values of the Grashof  number.  The dashed lines show the 
heat flux in a s ta t ionary  gas. The value of ( 0 T / ~ r ) i  (i = 1 , 2 ) d e c r e a s e s  in the direct ion of flow and becomes 
sma l l e r  than in heat conduction, s ince the gas gradual ly acquires  a t e m p e r a t u r e  c lose  to that of the surface  
along which it moves.  Comparisons  for  var ious values of the Gr number show that the maximum values of the 
heat f luxes increase  with increas ing  Gr. 

The following conclusions can be drawn f r o m  the resu l t s  obtained: in the range  of Gr numbers  and ra t ios  
of radi i  cons idered  the re  is s table s ingle-eddy motion; the convection coefficient  va r ies  slowly with the ra t io  
r 2 / r l ;  e k can be calculated f r o m  Eq. (8) which depends only on the Rayleigh number.  
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