NATURAL CONVECTION OF A COMPRESSIBLE FLUID
IN SPHERICAL LAYERS '
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The study of convective flows of a viscous compressible fluid in spherical layers is of considerable in-
terest for various technical applications. From the large amount of experimental material accumulated [1-4]
it is possible to obtain average heat-transfer characteristics, to establish the type of flow, and to classify the
flow regimes as a function of the Grashof number and the ratio of the diameters of the spheres. Scanlan et al,
[3] give the temperature profiles for a wide range of Prandtl numbers. All the experimental papers are devoted
to a study of convection when the inner spherical surface is the hotter. The problem was analyzed theoretically
in [5, 6]. Mack and Hardee [5] studied the steady axisymmetric natural convection of an incompressible liquid
between isothermal concentric spheres at low Rayleigh numbers (Ra < 10%. The fundamental equations were
solved by expanding the temperature T and the stream function y in series in powers of the Rayleigh number
and estimating the first three terms in each of these series. The configuration of flow lines, the distribution of
velocity and temperature, and data on heat fluxes at the spherical surfaces are given for one particular case.
Similarity theory is used in [6] to obtain the heat-transfer law for natural convection in cylindrical and spheri-
cal layers, taking account of the curvature of the region, In addition to experimental and analytical methods of
investigation, numerical experiment is becoming more and more important, enabling one to study rather com-
plete physical models, to analyze in detail the effect of various parameters on the phenomena under study, and
to develop the fundamental laws of the process. Numerical experiment yields the information necessary for a
more thorough analysis of convective heat transfer and the establishment of the law of interaction of hydro-
dynamic and thermal effects, namely: the structure of the flow field, and the distribution of density, tempera-
ture, and the local heat fluxes at the boundaries of the region. It is practically impossible to obtain this infor-
mation in a full-scale experiment. '

The purpose of the present paper is to determine the laws of convective motion and heat transfer of a
viscous compressible gas between a cooled inner spherical surface and a heated outer concentric spherical
surface. It is assumed that the gas obeys the ideal gas law p=R*p T, and that the temperature dependence of
the thermal conductivity A and the dynamic viscosity p is given by the Sutherland formula
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The specific heat cp depends linearly on the temperature. The only body force is gravity.

The presence of a temperature gradient in the gravitational field makes hydrostatic equilibrium impos-
sible. The convection currents which arise in the gap exert a large effect on the heat-transfer process. The
temperature distribution changes, and the rate of heating the medium in the gap is increased. The flows gener-
ated are symmetric with respect to the vertical z axis of the cylindrical coordinate system x, 6, z with its
origin at the center of the concentric spherical surfaces.

The investigation of flows and heat transport in the gas is based on the numerical solution of the system
of equations for unsteady convective heat transfer, which can be written in the form .
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t is the time; u and w are, respectively, the x and z components of the velocity v'; p is the pressure; p is the
density; T is the temperature; and ® is the dissipation function. The temperature is measured in units of the
temperature difference between the hot and cold surfaces AT’ =Té—-T1 (from now on dimensional quantities
are denoted by primes), and the velocity unit is the velocity of sound V' =v ¥R* Ty, at the average temperature

over the gap T,, = 7 ; T under conditions of hydrostatic equilibrium in the absence of body forces. The units of

density, specific heat, dynamic viscosity, and thermal conductivity are their values at the temperature Ty,. The
unit of length is taken as the thickness of the layer §'=ry—r], the time scale as 6'/(V")2, pressure as ppy (V"2
and gravity as g'. The dimensionless groups appearing in the equations have the form

Re = V&IV, cp = g6 I(V')?, Ec = (V')cpmAT".
Steady-state distributions of velocity, density, and temperature are reached at t —-=. We assume that at
zero time the gas is stationary over the whole region (u=w =0).

For given constant temperatures on the boundaries of the region r =ry, T=Ty; r =r,, T =T, the tempera-
ture within the layer varies only along the radius and is given by the heat-conduction equation

2 or 4 aT A oT
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The density at t =0 is determined by the equation of state in accord with the given temperature distribution.
The boundary conditions on the spherical surfaces are taken as
r=nr,r=r,u=1w=0,

where r is the running value of the radius; the density is calculated from the equation of continuity, taking ac-
count of the boundary conditions for the velocity components.
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For constant temperatures of the spherical surfaces, the steady-state flow and heat transfer depend on the
following dimensionless quantities: the Grashof number Gr = g'B,AT'8"%/(v,)% the Prandtl number Pr =
p}ncbm/)\ s the hydrostatic compressibility criterion cp, the ratio of the radii of the spheres r,/r,, and the
ratio of the specific heats ‘H.=Cb/ cy. We have investigated the effect of the Grashof number and the ratio of the
radii r,/r; on flow and heat transfer. The values of the rest of the governing criteria were fixed: Pr=0.71,
n=1.4, cp=0.05. In the calculations the variation of the Gr number for a fixed value of cy was achieved by
varying the Re number in accord with the expression Re =V (Gr/ c) Ty

The limiting time-independent solution of the system of nonlinear differential equations (1) was found by
an explicit difference scheme with correction at each time step [7]. The existence and uniqueness of the solu-
tion for given boundary and initial conditions follow from the physical meaning of the problem.
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TABLE 1
Dis~

Mesh! ®rt €rg  Crep-| €k
an

Ixm ,%Y-

17 17| 1,3150 | 1,3418 | 2 1,3284

31341 1,4747 [ 1,4921 | 1,2 | 1,4834

17331 1,4855 | 1,4929 | 0,5 | 1,4892

The system of difference equations was obtained by the method of balances, which essentially consists in
integrating each equation of the original system (1) over a cell of the region and then replacing the integrals by
finite sums. The finite-difference equations are written in operator form, which greatly simplifies the pro-
gramming for the computer. '

We analyze the method of obtaining the difference equations by the example of a quasilinear first-order
differential equation depending on two spatial variables and written in the form of a divergence
o d v B
“057+‘az—,.(“fhz;):°’ k=12, @)
where the x; are Cartesian coordinates, and the ajk=a ik, X, t) are smooth functions in the closed domain R
within which the solution of Eq. (2) is sought,

We introduce in domain R an orthogonal curvilinear coordinate system zj, chosen because of the geometry
of the region and the form of the boundary conditions for Eq. (2).

The coordinate lines zi=const form a curvilinear orthogonal mesh in domain R with L nodes along z; and
N along z,. We choose four arbitrary cells of the mesh having a common node, such as the one with coordinates
zy; =lhy, Zym =mhy; hyand hy are, respectively, the mesh sizes in the z; and z; directions. The form of the mesh and
the numbering of the nodes are shown in Fig. 1. '

Let @ be an auxiliary cell with its center at (z, Zom) and sides passing through the nodes with coordi-
nates
(Zy141f2r Zam)y (F11 Zamerfa)s (P11 Zam—1f2)y (Buimi/ar Zam)-
The half-integral subscripts denote, for example,
itafs = thy + Py/20 Zypeysy = mhy — hy/2.

We integrate Eq. (2) over cell @ and approximate the integrals on the right-hand side of the equation by using
Green's theorem. In operator form we can write

aw
gg G242 = §5 Wnyds,
Q

where n; is the X;j component of the outward normal to contour T of cell 2.

For cohvenience in writing, we number the sides of & as shown in Fig. 1. We denote by Wy the value of
the integrand on the k-th side k=1, 2, 3, 4), and by Wy , its value at the node (hy, mh,),
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Along side k we treat W}, as constant and equal to its value at the node with the half-integral subscripts,
where Wy is calculated by the symmetric formula, e.g.,

Wi =Wy m= (Wi, m+ Wig1,m )2 3
We describe the contour integral along the sides of @ by using (3). At the same time we transform from coordi-
nates X; to zj. Then '
@ Wn,ds le‘nnHldzl -+ 5% jn];;Hgle =+ W S nszgdzz - 114 j'nﬂH[‘dzz, (4)
Ty Ty

where H! and H? are the Lamé coefficients for the system zj. In calculating with (4) it is necessary to make
sure that Hfdz; > 0.

It follows from (2) that W in Eq. (4) depends linearly onderivativeswhich are calculated by the formula
[8]
0l0x; = (1;;/H)/ 9z, (5)

where lij is the xj component of the unit vector tangent to the coordinate line zj. Using (5) we have

v 1.
g(a]k o )n]ds = j‘a,-kn,- (._1{_—?- >ds.
. ! HP 9%
r T

The integral on the right-hand side is evaluated by parts along each side i of cell 2., The derivatives in (5)
were determined by the symmetric formulas ensuring the approximation of 8/ BxJ- to second-order accuracy.
For example,

1A~ - . —_— .
Ov/0z; = (U1, mt+1 — U1, m=1 & Vtt1s me—1—V1—1, m—1}/bhy;
l0zy = (V1414 m = Vi, m)hs.

In the problem under consideration the space cell  is chosen as follows. We divide the region between
the spheres into sectors by planes R g passing through the axis of symmetry with an angle A6 between them,
Because of the symmetry of the problem it is sufficient to find the solution in one sector. We seek the solution
in the sector bounded by the planes R; and R g which correspond to the angles ¢ =0 and 6 =A6. We introduce
polar coordinates r and ¢ in the R plane. Then the sides of the space cell & are formed by the sides of Q (Fig.
1) by rotating the R, plane through an angle A6 about the z axis. The lateral sides of Q lie in the planes R, and
R g of the sector in which the solution is being determined. The cells Q directly adjacent to the axis of sym-
metry are formed by rotating the half cell @ by A6. To save space the integral notation of the equations is not
presented, Because of the symmetry of the problem, the integrand does not depend on 6 and

5 Y S Y adwdzdd = AB ” 2. adads,
a

where X is any of the coordinates t, r, z. The methods of evaluating the contour integrals for cells on the z
axis (p =+1/2) and for those at a distance from it (-7/2 <¢ < + n/2) are different. For-n/2<¢ < +1/2 we
have

‘8‘5‘ O(WI) dzdz = j'(Wx)n ds = [(Wlxl War,) cos AT(p - sing —

— (Wyzy + W3z3) cos @ sin ———] Ar + [(W2x2 Wax)r+

O Wy ¥ s s+ (322588 = 5]

5 S' 8 grdz = S’ (W) nyds = [(-Im2 — Wz r + (W, + Wazy) %] %
g r .
% sin? Agp — [(Wlav1 — Wyz,) cos @ - cos %i’ + (Wyzy + Wyx,) sin g sin i_tp] Ar.

For ¢ =+ n/2

W A AF A Ap —sin A
S‘S‘ a(axz) dzdz = (W x,) Ar cos T‘P -+ [Wﬁ (r + —2—5) —W, (r— —21) ](W)’
g
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The difference expressions for ¢ =—n/2 are written similarly.

The numerical solution enables one o obtain the hydrodynamic structure of the flow and the pattern of the
temperature distribution T (r, ¢) for various flow regimes characterized by the Grashof number Gr and the
ratio of the radii ry/r;. Knowing the temperature distribution, the local Nusselt numbers (9T/8r); at the bound-
aries of the region can be calculated, and then the convection coefficient €y is given by the expression

o =
&y = % =k (” )i, (6)

e Vo7
which shows the excess of convective heat transfer over pure conduction.

In Eq. (6), (6T/ ar){ is the average value of the Nusselt number over the boundary of the region and is
equal to

67 1 + T
(_a;)iz—Z_ ! (7;)1. cos gdg, i = 1, 2.
—/

/s

The derivative in the last expression was approximated by the three-point formulas giving second-order ac-
curacy of the form :

6T[6r o (3T1_1, m 4Tl, m -+ Tl+1, m)/ZAr

Using the difference method described, a BESM—A LGOL program was written for a BESM-6 computer
and translator connected to a "Dubna" monitor system., The machine time required with this arrangement was
shorter than with an ordinary ALGOL translator by a factor of 2.2.

The main results presented below were obtained withan Ny x Np=17x33 mesh., This mesh was optimum
from the point of view of admissible calculational error and the necessary expenditure of machine time. To
justify the choice of the numbers of nodes of the difference mesh along the different coordinate axes we per-
formed calculations with 17 x 17, 17 x 33, and 31 x31 meshes, The effect of the mesh size on the convection
coefficient can be judged from the data of Table 1 obtained for Gr =0.5 - 10%, cp= 0.05, and ry/r,;=2. The data
in Table 1 correspond to the steady state. In a calculation without error &y,=€g, The discrepancy is defined
as As=(|ep, — £11[/Exe) 100%.

A comparison of the convection coefficients for I xm=17 %17 and I xm = 31 x31 shows that the discrep-
ancy is not always significantly decreased simply by increasing the number of nodes. This effect can be ex-
plained by the nonuniformity of the mesh resulting from the curvilinear nature of the region.

In choosing a uniform mesh (¢ —1=m - 1) it is assumed that a cell 2 will be nearly square, but actually
it depends on the position of the cell along the radius. The degree of distortion of the cell is characterized by
the deviation of the ratio of the sides of the cell from unity

K = ArlrAg = 8(m — 1)/(I — )ra,

where I -1 is the number of Ar steps along the radius, and m - 1 is the number of A¢ steps in angle from ¢ =
~7/2to @ = +7/2.

When 6 =1 this relation reduces to
K= ({m—1)/(l — )rn. n

Hence when / ~ 1=m - 1 we obtain K=1/rn; ie., the distortion does not depend on the number of nodes along
r and ¢ and is minimum for r =1/7 =0.32.

The data in Table 1 were obtained for a ratio of the radii ry/r; =2, which for 6 = 1 leads to the relation
1 =r <2, and, consequently, 1/27 <K =<1/7. Clearly, it is necessary to take I — 1 #m ~ 1 to decrease the dis-
tortion of the cell. The optimum mesh, determined by the ratio (m=—1)/ (¢ — 1)rx for 1 <r =<2, satisfies the
inequality * < (m—1) /I—1) =27, whichshows that on the average the number of nodes along ¢ must be ap-
proximately 4.5 times as large as the number alongr.

Because of the limitations of the computer mefnory the total number of nodes is ordinarily kept constant,
I xm=const. For a ratio of steps Ar and &y determined by Eq. (7) the error in the approximation of the de-
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rivative with respect to r is appreciably increased, and this has an adverse effect on the results of the calcula-
tion. The optimum mesh is chosen by a careful numerical experiment. In our case Ny x N(p =17 % 33, for which
the ratio (m - 1)/ ( — 1) =2.

With Gr =< 104 this mesh leads to a discrepancy of about 0.5%. As Gr is increased the discrepancy in-
creases rapidly, and for Gr =0.5-10° and 10° it reaches 7 and 9%, respectively. This increase in discrepancy,
and, consequently, in the error of the calculation, is accounted for in the present case by the complication of
the flow structure. For these Gr numbers a secondary eddy is formed in the neighborhood of ¢ =+ 7/2. A
weaker eddy appears at ¢ =—7/2, close to the outer and inner spheres,

The numerical solution required 2-3 calculational nodes along r in the region of the secondary eddy, i.e.,
the mesh was very coarse, particularly if the eddy did not extend over the whole width of the gap. This fault
was eliminated by changing to a finer 31 x 33 mesh, although such a fine mesh was not required for most of the
computational region. A more reasonable approach is clearly to compress the mesh in r and ¢ in the neigh-
borhood of the verticals ¢ =+ n/2. This decreases the calculational error without increasing the total com-
putation time too much.

" The time step is determined by the stability conditions
At < min (h*/4v, h/lal)

{or At <h/| a |, since generally h/ja} < k*/4v), obtained by Fourier methods for the model equation du/ot=
adu/dx +v 0%u/ox?, where a is a quantity related to the maximum of the velocities u, w; v is a constant deter-
mined by the maximum value of the kinematic viscosity.

To obtain the velocity and temperature distribution patterns and the dependence of the convection coef-
ficient on the governing criteria, calculations were performed in which the Grashof number and the ratio of the
radii were varied between the following limits: 10% <Gr =105, 1.2 =<r,/r;=3.

The nature of the motion generated in the layer and the characteristics of the temperature distribution
can be judged from Fig. 2 which shows the flow lines y and the isotherms for several values of the Grashof
number, Convection hardly affects the heat transfer for Gr =103, although Fig. 2a clearly shows the presence
of ascending and descending flows. The total amount of heat transferred in this case is by conduction, as is
confirmed by the value of 0.98 for the convection coefficient.

For Gr =10° the isotherms are practically circles, but with increasing values of the Grashof number
they are distorted (Fig. 2b), and for Gr =104 they undergo a pronounced change (Fig. 2¢). This is related to
the character of the motion in the gap. The gas rises along the heated outer sphere and descends along the
cooled inner sphere. In this case unicellular flow (crescent eddy) occurs for all the values of ry/r;and Grashof
numbers Gr < 10° considered, The secondary eddy which appears at the inner sphere near the vertical ¢ =
+7/2 for Gr =10% is small and localized, and therefore is assumed to be unicellular also. As the Grashof num-
ber is increased for a constant ratio ry/r, the intensity of the circulation in the gap increases and eddy center
is displaced downward at an angle (Fig. 2a-c).

In this type of flow the gas in the eddy part of the region heats up more strongly, and the isotherms here
are rather far away from the outer wall (Fig. 2c) and bunched close to the inner wall, The opposite effect is
observed in the lower part of the region; the cooled gas lowers the temperature of the inner sphere. At the
outer sphere the heated gas is carried upward by the flow, and the isotherms are close to the wall,

For Gr =104, corresponding to a rather well-developed convection regime, thermal and velocity boundary
layers are formed close to the spheres. The formation of a houndary layer and the flow core with increasing
Grashof number can be traced in Fig, 3. The curves are plotted for ry/r;=2. Figure 3 shows the profile of the
vertical component of velocity w at ¢ =0 for various values of the radius r. In regions adjoining the spheres
the gas has a high flow velocity as compared with the velocity in the central and main parts of the eddy. This
effect increases as Gr approaches the maximum values considered. The maximum velocity of the ascending
flow w, occurs at a distance from the boundary which is large in comparison with that of the maximum velocity
w, of the descending flow, since the outer heated wall has a larger area than the cold inner wall, and the dynam-
ic layer of gas is thicker here.

Figure 4 shows the temperature profile as functions of the radius for various values of the angle ¢. Tem-
perature stratification with a central zone where the temperature gradient is small and relatively uniform is
characteristic for convection. This portion corresponds to the central low-velocity part of the eddy where heat
is tr:msferred‘mainly by conduction. Most of the heat transfer is concentrated close to the boundaries of the
region where the gradient along the radius is large. As ¢ increases from—n/2 to 7 /2 the value of the steep
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increase of the gradient at the inner sphere increases, and the value at the outer sphere decreases. This kind
of profile results from the high rate of heat transfer in the tangential direction in the high-velocity boundary
layer. The shape of the profile for a corresponding value of the angle remains essentially unchanged for a
change in the ratio ry/r,, and only the temperature changes for a given radius and extension of the characteris-
tic parts of the profile along r. All these properties of the profiles are confirmed qualitatively by experiment

[31.

Processing the results of the numerical solution by similarity theory methods gives the following expres-
sion for the convection coefficient £y as a function of the Rayleigh number Ra:

e = 0.143.Ra0.272 (8)

in the range 7 - 10 <Ra =7-10%and 1.2 = ry/ry =3. The corresponding experimental formula for a spherical
layer obtained in [3] is

g, = 0.12.Ra0-276,

It is valid in the range 1.4-10*<Ra < 2.5-106,Pr =0.71, and 1.09 < ry/ry=2.81. The similarity criteria are
the same in both cases,

In addition to the integral heat-transfer characteristics, the local heat fluxes at the outer and inner
spheres were calculated and plotted in Fig. 5 for two values of the Grashof number. The dashed lines show the
heat flux in a stationary gas. The value of (8T /0r); (i =1, 2)decreases in the direction of flow and becomes
smaller than in heat conduction, since the gas gradually acquires a temperature close to that of the surface
along which it moves. Comparisons for various values of the Gr number show that the maximum values of the
heat fluxes increase with increasing Gr.

The following conclusions can be drawn from the results obtained: in the range of Gr numbers and ratios
of radii considered there is stable single-eddy motion; the convection coefficient varies slowly with the ratio
T,/Ty; € can be calculated from Eq. (8) which depends only on the Rayleigh number.
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